动物学杂志 Chinese Journal of Zodogy 2006,41(6).54~59

海南岛黎母山四眼斑水龟种群密度与 空间分布格局

(①海南师范大学生物学系 海口 571158; ②北京师范大学生命科学学院 北京

③华南濒危动物研究所广东省野牛动物保护与利用公共实验室 广州

摘要: 2004 年 3~7 月,采用系统抽样法在海南岛黎母山对四眼斑水龟(Sacalia quadriocellata) 种群密度与 空间分布进行了调查,采用Cassie 指数、David & Moore 指数、Morisita 指数和Iloyd 指数测定了四眼斑水龟 种群空间分布格局。结果表明,(1) 四眼斑水龟种群分布于海拔 $170 \sim 470$ m 范围内,在垂直梯度上呈现 不连续的分布状态;(2) 在海拔 170~470 m 范围内种群相对密度为 0.011~0.050 只/笼捕日;(3) 种群空 间分布呈现聚集分布格局;(4)资源的空间分布特点和人为干扰可能对四眼斑水龟种群密度及空间分布 格局有重要影响。

关键词: 四眼斑水龟;种群密度;空间分布格局;海南岛

中图分类号:0958 文献标识码:A 文章编号:0250-3263(2006)06-54-06

Population Density and Spatial Distribution Pattern of Sacalia quadri ocellata on Li mu Mountain of Hainan Island, Chi na

GONG Shi Pinq ^{©©®} SHI Hai Tao $^{\odot}$ CHEN Chuan $^{\odot}$ XI E Cai Ji an $^{\odot}$ XU Ru $^{-}$ Mei $^{\odot}$

(Department of Bology, Hainan Normal University, Haikou 571158;

© College of Life Sciences, Beijing Normal University, Beijing 100875; ③ Guangdong Public Laboratory for Wildlife Conservation and Wise Use, South China Institute of Endangered Animals, Guangzhou 510260, China)

Abstract Population density and spatial distribution pattern of Sacalia quadriocellata was studied by regular sampling conducted from March to July of 2004 in Limu Mountain, Hainan Island. Four indices, Cassie index, David & Moore index, Morisita index, and Hoyd index, were used to evaluate the aggregative degree of S - quadriocellata. Populations of $S \cdot quadriocell$ at a are scatteredly found at elevations between 170-470 m with a discontinuous pattern. The relative population density is 0.011 - 0.050 ind \cdot cage day. The populations are spatially aggregated in their distribution range. Human disturbance and uneven distribution of the natural resources may affect the population density and spatial distribution pattern ·

Key words: Sacdia quadriocell at a; Population density; Spatial distribution pattern; Hainan Island

四眼斑水龟(Sacdia quadriocellata)属于淡 水龟科(Bataquridae) 眼斑龟属(Sacalia) 动物,主 要分布于我国的海南、广西、广东、江西等省,国 外分布于越南、老挝等地 1.2 。近些年来,由于 栖息地破坏、过度猎捕和非法龟贸易等原 因3,4,导致四眼斑水龟栖息环境不断恶化、种

对该物种的研究报道包括生态 6.7 、牛理解

基金项目 香港嘉道理农场暨植物园(KFBG) 华南生物多样性 保育项目,国家自然科学基金项目(No.30260019);

* 通讯作者,E mail haitao shi @263 net;

第一作者介绍 龚世平, 男, 博士; 主要从事动物生态学和保 护生物学研究; E mail asp 621@sohu com。

群数量急剧下降,已被列为濒危物种^引。迄今, _{收稿日期,2006-05-19,修回日期,2006-09-08} (C)1994-2022 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnl

剖^{8~1q}、养殖^{11.19}和分布^{1.14}等方面,但已有的生态学研究仍然不够全面和深入,在种群密度和空间分布格局方面的研究尚未见报道。

种群密度与空间分布格局是种群生态学研究的重要内容。种群密度是反映种群消长以及资源蕴藏量的重要指标,也是评估物种濒危程度的重要指标¹⁹,空间分布格局能够揭示种群的空间结构,是了解种群的生物学特点、种群与环境的关系、种群结构、动态和调节机制的重要基础¹⁹。因此,研究种群密度与空间分布格局对濒危物种科学评估、保护和管理具有重要的理论指导意义。海南岛是四眼斑水龟重要的分布区之一,也是我国淡水龟类保育方面具有优先性的地区¹⁹。鉴于此,作者于 2004 年 3~7月,在海南岛黎母山对四眼斑水龟的种群密度与空间分布格局进行了调查研究。

1 研究地区与方法

自然概况 黎母山是我国珍稀的原始热 带雨林保护区之一,位于北纬 19°07′~19°14′, 东经 109°39′~109°49′, 面积 12 889 hm²。主峰 黎母岭海拔 1 412 m, 植被属于热带常绿季雨 林,植物垂直地带性明显;四季不明显,终年温 暖湿润,雨量充沛。自然环境特点详见文献^引。 本研究选取海拔跨度较大(150~1170m),穿越 多种环境类型的腰子河上游和中下游, 总流程 约为 24km 的河段作为研究区域。腰子河发源 于黎母山北麓,北流注入南渡江。海拔150~ 170 m 的河流两岸为农业植被,水流比较平缓, 水深 0.5~3.0 m, 河底主要是泥沙; 海拔 170~ 400 m 的河流两岸主要是农业植被,近河岸有 少量次生植被,落差为 0.5~5.0 m, 水深 0.3~ $1.5 \, \text{m}$,河底主要是沙石;海拔 $400 \sim 900 \, \text{m}$ 的河 流两岸为季雨林和热带沟谷雨林,落差为0.5 $\sim 15 \, \text{m}$, 水深 $0.3 \sim 2.0 \, \text{m}$, 河底主要是沙石; 海 拔900~1200 m 为常绿针阔混交林,落差为 0.2~0.1m,河底主要是石块,随着海拔升高水 流逐渐变小,部分形成暗流。

1.2 研究方法

笼点比较均匀地沿河沟分布,以便调查四眼斑水龟在研究河段的整体分布情况,采用系统抽样方法¹⁸,在海拔 $150\sim1~170~m$ 范围内,沿河沟流向,每隔 $50\sim90~m$ 选取 1~ 个布笼点,共设置 356~ 个布笼点。

- 1.2.2 捕捉方法 采用笼口为圆形、直径约 25 cm、笼体长约 60 cm 的竹笼作为捕获器。内部放置腐牛肉和咸鱼作为诱饵。该捕获器放置一次可连续捕捉多只四眼斑水龟。每 1~2 d 检查一次笼具,对捕获的龟测量和标记后,原地释放。海拔 470 m 以下每个布笼点设 6 个笼捕日(一个竹笼放置一个昼夜为一个笼捕日),470 m 以上每个布笼点设 12 个笼捕日(延长布笼时间,为了弄清海拔 470 m 以上是否有四眼斑水龟分布)。
- 1.2.3 种群密度统计方法 以平均每个笼捕 日所捕获的龟数量作为相对指标来表示种群相 对密度。对不同海拔梯度内四眼斑水龟的种群 相对密度进行统计,分析种群相对密度随海拔 梯度变化的特点和趋势。
- 1.2.4 种群空间分布格局测定方法 由于调查中在海拔 170 m 以下和 470 m 以上的范围没有发现四眼斑水龟,所以本文假定四眼斑水龟分布的海拔范围为 170~470 m,因此用海拔 170~470 m 范围内的 160 个布笼点作为样本来测定空间分布格局。聚集度指数能够度量一个种群空间分布的聚集程度 随机、均匀或聚集),测定种群空间分布格局的指数有多种 16,19,本文主要采用 Cassie 指数、David & Moore 指数、Morisita 指数和Ilovd 指数 4 种聚集度指数。

1.2.4.1 Cassie 指数(*C_A*)

$$C_A = \frac{(V - M)}{M^2}$$

式中,V 为方差,M 为平均密度。当 C_A = 0,为随机分布; C_A > 0,为聚集分布; C_A < 0,为均匀分布。

1.2.4.2 David & Moore 指数
$$I$$
)
$$I = V/M - 1$$

式中,V 为方差,M 为平均密度。当I=0

均匀分布。

1.2.4.3 Morisita 指数 *I* à

$$I_{\delta} = rac{Q \cdot \sum\limits_{i=1}^{o} n_i (n_i - 1)}{N(N - 1)}$$

式中,Q 为样方数,N 为总个体数, n_i 为第 i 个样方的个体数。当 $I_{\delta}=1$ 时,为随机分布; $I_{\delta} < 1$ 时,为均匀分布; $I_{\delta} > 1$ 时,为聚集分布。

1.2.4.4 Iloyd 指数(m/m)

$$\dot{m} = \frac{\sum_{j=1}^{0} x_{j}(x_{j} - 1)}{\sum_{j=1}^{0} x_{j}}$$

式中,m为平均拥挤度,m 表示平均每个样方的个体数。当 m/m=1 时,随机分布;m/m >1 时,集群分布;m/m <1 时,均匀分布。

2 结果与分析

种群密度 在海拔 150~1 170 m 范围内, 共进行了2352个笼捕日的捕捉,仅在海拔170 $\sim 470 \, \text{m}$ 范围内的 26 个样点捕获到 36 只四眼 斑水龟,其中雌性个体 18 只,雄性个体 10 只, 幼体8只表1)。本次调查捕获到四眼斑水龟 的最高点海拔为 $430 \, \text{m}$, 最低点海拔为 $170 \, \text{m}$ 。 在海拔 $470\sim1~170~\text{m}$ 的河段内,设置 36 个布笼 点,捕捉432个笼捕日,未捕获到四眼斑水龟。 在海拔 150~170 m 范围,设置 160 个布笼点, 捕捉 960 个笼捕日, 也未捕获到四眼斑水龟。 从不同海拔梯度内四眼斑水龟的相对种群密度 统计结果看 表 2 , 在海拔 170 470 m 以外的 调查区域种群相对密度均为零,在海拔170~ 470 m 内, 在垂直梯度上呈现不连续的分布状 态。种群相对密度为 0.011~0.050 只/笼捕日, 在可发现范围内,总体表现为随海拔的上升种 群相对密度逐渐减少的趋势(图1)。

2.2 种群空间分布格局 在研究的 160 个布 笼点中,捕获 1 只龟的布笼点有 19 个,捕获 2 只龟的布笼点 5 个,捕获 3 只龟的布笼点 1 个,捕获 4 只龟的布笼点 1 个,其余 134 个布笼点

4 种聚集度指数一致反映四眼斑水龟种群空间 分布为聚集分布格局。

表 1 四眼斑水龟性别鉴定和躯体测量结果
Table 1 Sex and morphological measurements of

S • quadri ocell at a

/è. 🗆	tat met	体重	背甲长	背甲宽	背甲高	腹甲长	尾长
编号	性别	BW	CL	$\mathbf{C}\mathbf{W}$	СН	PL	TL
No ·	Sex	(g)	(cm)	(cm)	(cm)	(cm)	(cm)
1	4	275.0	13.680	9.350	4.310	11.942	3.878
2	4	246.0	12.690	9.298	4.478	11.156	4.372
3	J	52.5	7.742	6.502	2.948	6.514	2.664
4	7	137.0	12.748	9.390	4.088	11.002	3.378
5	\Diamond	207.5	12.468	8.824	4.060	10.402	3.308
6	4	206.5	12.268	8.804	4.022	10.308	3.302
7	\Diamond	193.0	11.402	8.332	3.918	9.748	3.068
8	7	176.5	12.818	9.192	4.794	11.252	3.482
9	7	159.0	10.936	8.688	4.034	9.688	2.892
10	7	231.0	12.328	9.038	4.712	10.706	3.448
11	\Diamond	155.5	10.902	7.928	3.824	9.036	2.718
12	7	125.0	10.126	7.988	3.506	8.724	3.122
13	J	47.5	6.914	6.182	2.866	5.640	2.532
14	J	79.0	8.092	7.024	3.242	6.996	2.594
15	4	249.5	12.688	8.822	4.746	11.134	3.374
16	\Diamond	225.0	11.822	8.974	4.366	10.286	3.228
17	J	80.0	8.382	6.864	3.364	7.260	2.554
18	4	114.5	9.574	7.522	3.692	8.392	3.398
19	\Diamond	237.0	12.608	8.696	4.128	10.688	3.432
20	J	83.0	8.674	7.324	3.564	7.352	3.296
21	4	277.5	12.168	8.828	4.566	11.078	3.304
22	4	152.5	10.832	8.564	3.446	9.126	2.834
23	J	77.5	8.208	6.898	3.472	6.756	2.707
24	\Diamond	175.5	11.480	7.962	3.828	9.430	2.390
25	\Diamond	131.5	10.198	7.952	3.758	8.752	3.692
26	4	245.0	12.486	9.628	4.338	10.618	3.498
27	J	102.0	9.592	7.468	3.442	8.062	3.146
28	우	114.0	9.514	7.698	3.758	8.056	3.222
29	4	238.0	12.754	9.486	4.602	10.846	3.992
30	우	230.0	12.524	9.448	4.492	10.936	3.742
31	J	103.5	8.376	7.398	3.688	8.044	2.814
32	4	231.5	12.212	8.836	4.736	10.572	2.998
33	4	122.5	9.876	7.526	3.682	8.478	2.612
34	\Diamond	184.5	11.516	8.898	3.908	9.566	3.376
35	\Diamond	215.0	12.016	8.742	4.098	10.238	3.032
36	↑	186.0	11.202	8.628	4.342	9.446	2.952

J:幼体 Juvenile;BW; Body weight;CL; Carapace length;CW; Carapace width;CH; Carapace height;PL; Plastron length;TL; Tail length;

未捕获到色乳聚集度指数测定结果表明 表别 ronic Publishing House. All rights reserved. http://www.cnl

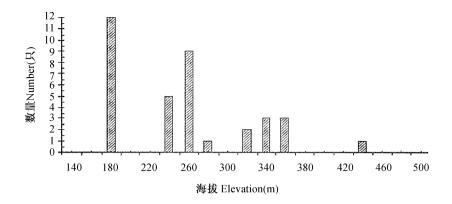


图 1 不同海拔梯度内捕获四眼斑水龟的数量

Fig. 1 The number of $S \cdot quadriocellata$ at different elevation ranges

表 2 不同海拔梯度内四眼斑水龟的种群相对密度
Table 2 The relative densities of S · quadriocellata
at different elevation ranges

海拔 Elevation (m)	布笼点数 Cage locations	笼捕日 Cage days	捕获龟 Number of turtles (只)	相对密度 Relative density (只/笼捕日)
150~170	160	960	0	0
$170 \sim 270$	90	540	27	0.050
$270\sim370$	55	330	8	0.024
370~470	15	90	1	0.011
470~1 100	36	432	0	0

表 3 四眼斑水龟种群空间分布格局 Table 3 Spatial distribution pattern of S · quadri ocell at a

4							
聚集度指数 Index	C_A	I	Iδ	$\stackrel{{}_{\sim}}{m}/m$			
聚集度 Degree of aggregation	2.501	0.563	2.540	3.457			
空间格局 Spatial distribution pattern	聚集 Aggregated	聚集 Aggregated	聚集 Aggregated	聚集 Aggregated			

3 讨论

3.1 种群密度与分布 四眼斑水龟是栖息于山区溪流环境中的水栖龟类 6.7 ,一般藏身十分隐蔽,调查其绝对密度非常困难,因此,本研究

密度变化。种群相对密度为零,不能确切说明 龟在某个区域没有分布。本研究在海拔 470 m 以上和170m以下没有发现四眼斑水龟, 在海 拔170m以下河流比较平缓,同一海拔梯度内 布笼点比较多,通过高强度的捕捉 共960个笼 捕日),未捕获到四眼斑水龟。在海拔 470 m 以 上,由于山势陡峭,多瀑布,同一海拔梯度内布 笼点比较少, 在海拔 470 m 以上设置了 36 个布 笼点,通过连续6d的捕捉,未捕获到四眼斑水 龟,为了明确海拔 470 m 以上是否有四眼斑水 龟分布,将36个布笼点的捕捉时间延长到12 d,仍然未捕获到四眼斑水龟。因此,本研究认 为在研究地区四眼斑水龟分布的海拔范围大致 为170~470 m。龚世平等¹⁴ 对海南尖峰岭自 然保护区调查发现,四眼斑水龟在海拔 620 m 左右也有分布。四眼斑水龟分布的海拔范围可 能在不同的地区,不同的人为干扰条件下有一 定差异,仍有待深入调查。

在可发现范围内,种群密度随着海拔升高有下降的趋势。龚世平等¹对研究地区海拔500 m以上和以下的环境因子进行了比较分析,发现两者在植被、水流、基底类型和食物丰度等方面存在显著差异,随着海拔的升高,环境因子也逐渐发生变化。因此,四眼斑水龟种群密度随着海拔升高而下降的特点可能与环境的变化有关。

发现 36 只四眼斑水龟。野外调查中发现在海拔 170~470 m 范围内许多未捕获到四眼斑水龟的环境与捕获到的环境高度相似,并且于河沟中发现了一些废旧的捕猎淡水龟的笼具。由于淡水龟类贸易活跃,该地区淡水龟遭到普遍猎捕^{4.7}。因此,推测四眼斑水龟种群密度远远低于其自然种群密度,在适宜分布的海拔范围内呈现不连续的分布很可能是人为过度猎捕所导致。

3.2 种群空间分布格局 虽然测定种群空间分布格局的指数有多种 16.19,但由于各聚集度指数构造方法不一样,有时会出现各测定指数测定结果不一致的现象,最好应用两种以上的测定方法,当两种以上方法给出一致性的结果时,则可以认为已反映一定的真实性 29。本文选用了常用的聚集度指数中的4种指数来测定四眼斑水龟种群空间分布格局,4种聚集度指数一致反映四眼斑水龟种群空间分布为聚集分布格局,因此,可以认为四眼斑水龟种群空间分布为聚集分布格局,因此,可以认为四眼斑水龟种群空间分布为聚集分布格局。

除了人为因素外,一个种群的空间分布格 局也受种群的生物学特点和其他生态因子,如 食物、捕食和竞争的影响,空间分布格局是动物 对这些因子的生物学反应的结果型。动物种 群的分布型主要取决于个体间的相互作用和栖 息环境的特点。相互吸引就会形成集群,相互 避开可能产生均匀分布,中性关系可能形成随 机分布。就环境特征而言,如果食物等资源的 分布是斑块状的,就可能导致成群分布 29。从 四眼斑水龟种群空间分布格局的特点来看,种 群个体具有集群性特点。单个体样点比较多, 说明种群的个体之间相互比较独立,集群性比 较弱。调查发现大多数四眼斑水龟都是在具有 水潭的地方捕获,约占捕获龟数量的80%。具 有水潭的地方,由于水比较深,有利于龟藏身, 水潭环境中的水牛动植物为龟提供了比较丰富 的食物。龟往往在比较大的水潭环境中形成小 群体。水潭环境可能作为重要的自然资源对四 眼斑水龟的空间分布格局有重要的影响。

斑水龟种群密度和空间分布的影响主要包括两个方面:(1)降低了种群密度,使得一些原来有龟栖息的环境中出现空生态位:(2)适宜环境遭到破坏,使得四眼斑水龟实际分布范围缩小。由于这些人为干扰的存在使得本研究难以确切了解四眼斑水龟自然状态下的种群密度和空间分布的特点,有待于在保护比较完好的地区进一步调查研究。

致谢 海南岛黎母山林业公司梁远杰、李海同志提供地图等资料,黎母山镇高利墉村邓成方、胡运京等同志对野外工作给予帮助,海南师范大学生态学野外研究湾岭基地符炳龙同志协助野外工作,美国加州大学Jonathan Fong 博士和海南师范大学汪继超老师给予论文宝贵建议,谨致诚挚谢意!(封面图片:雌性四眼斑水龟,龚世平2004年摄于海南岛黎母山。)

参考文献

- [1] 张孟闻,宗愉,马积藩. 中国动物志 爬行纲(第 I卷). 北京,科学出版社,1998,86~144.
- [2] Stuart B. Hatt S. Recent records of turtles and tortoises from Laos. Cambodia. and Vietnam. Asiatic Herpetological Research., 2004, 10:129~150.
- [3] Lau M.Shi H T. Conservation and trade of terrestrial and freshwater turtles and tortoises in the People's Republic of China. Chelonian Research Monographs, 2000, 2:30~38.
- [4] 龚世平,符有利,汪继超等.海南淡水龟类贸易现状与管理建议.生物多样性,2005,**13**(3);239~247.
- [5] 赵尔宓·中国濒危动物红皮书(两栖类和爬行类)·北京:科学出版社,1998,86~172.
- [6] 史海涛,符有利,汪继超.四眼斑水龟之迷.人与生物圈, 2002,**6**,34~40.
- [7] 龚世平, 史海涛,谢才坚等. 海南岛黎母山四眼斑水龟 对春季生境的选择性. 动物学研究, 2005, **26**(2):142~ 146.
- [8] 傅丽容,洪美玲,史海涛等.四眼斑水龟泄殖系统的解 剖.动物学杂志,2004,39(3),68~71.
- [9] 洪美玲,傅丽容,史海涛等.四眼斑水龟消化、呼吸系统的解剖.动物学杂志,2004,**39**(1):68~71.
- [10] 傅丽容,洪美玲,史海涛等. 四眼斑水龟的血细胞形态 及血液检验分析. 动物学杂志, 2004, **39** 6) .73~76.
- [1] 周婷. 四眼斑水龟人工饲养条件下的生态. 四川动物,

(C人为4元批2包括猎捕和栖息地破坏a) 对四眼 nic Publishing House. All rights reserved. http://www.cnl

- [12] 王志伟,洪美玲,史海涛等.人工饲养条件下四眼斑水 龟的食性研究.四川动物,2005,**24**(2),218~221.
- [13] 李致勋. 海南岛爬行动物的调查报告. 动物学杂志, 1958, **2** 4, 234~239.
- [14] 龚世平, 史海涛, 徐汝梅等. 海南尖峰岭自然保护区淡水龟类调查. 动物学杂志, 2006, **41**(1), 80~83.
- [15] 蒋志刚,马克平,韩兴国,保护生物学,杭州:浙江科学 技术出版社,1997,108~109.
- [16] 徐汝梅·昆虫种群生态学·北京:北京师范大学出版 社,1985,7~34.
- [17] 龚世平,徐汝梅,史海涛等.海南岛淡水龟类区系特点 及保护优先性分析.动物学杂志,2003,38(6):68~71.

- [18] Sutherland W J · Methods of Ecological Survey · A manual · London : Cambridge University Press $, 1997, 60 \sim 126$.
- [19] Southwood T R E · Ecological Methods : With Particular Reference to the Study of Insect Populations (2nd edition) · London :Chapman & Hall , 1978, $26 \sim 51$.
- [20] 洪伟,柳江,吴承祯.红锥种群结构和空间分布格局的研究.林业科学,2001,37(专刊1),6 \sim 10.
- [21] 房继明. 啮齿动物的空间分布格局研究. 生态学杂志, 1994, **13**(1), 39~44.
- [22] 孙儒泳·动物生态学原理(第三版)·北京:北京师范大学出版社,2001,161~163.

一位杰出的中国动物学家

——纪念我国著名动物学家郑作新院士百年华诞(1906~2006)

我国杰出的动物学家郑作新 1906 年 11 月 18 日出生于福建省长乐县首占村;1926 年福建协和大学毕业后赴美国密歇根大学研究院深造;1930 年获科学博士学位,同年秋天回国;历任福建协和大学动物学教授、系主任、教务长、理学院院长等职;1945 年应邀赴美国任客座教授一年;1947 年调南京国立编译馆任自然科学编纂,主持自然科学名词审订工作,兼任中央大学教授;1950 年调北京中国科学院动物标本整理委员会,后任动物研究所研究员、中国科学院编译局编审暨名词室主任。1956 年以来,历任中国科学院动物研究所脊椎动物分类区系研究室主任、北京自然博物馆业务副馆长兼自然历史研究所所长、中国科协全国委员会第二届委员、中华人民共和国濒危物种科学组组长、中国野生动物保护协会副会长等职。1951 年加入九三学社,1984 年 6 月加入中国共产党。

郑作新是我国现代鸟类学研究的创始人之一。从 20 世纪 30 年代起,经过 50 多年坚持不懈的钻研,发现鸟类新亚种 16 个。先后写出《中国鸟类系统检索》《中国鸟类分布名录》和《中国经济动物志。鸟类》等 20 余部研究专著,及 140 余篇研究论文。他的代表作《中国鸟类区系纲要》(英文版)于 1987 年问世。这是当时中国最完整的鸟类分类学巨著,也是国际上杰出的鸟类学专著之一。此项成果曾获得中国科学院自然科学一等奖和国家自然科学二等奖。美国野生动物资源保护联合会也为此于 1988 年授予他"国际动物资源保护特殊成就奖"。1994 年,他又出版了《中国鸟类种和亚种分类名录大全》,进一步完善了我国鸟类的系统分类。

郑作新是我国鸟类分类学说的创新者,动物地理学的开拓者,自然保护生物学的积极倡导者。

郑作新是中国动物学会的发起人之一(1934年),历任理事、常务理事、秘书长、副理事长、理事长、名誉理事长等职。他也是中国动物学会鸟类学分会的创始人(1980年),并被推举为第一任理事长、名誉理事长。1980年他当选中国科学院学部委员(院士)。

郑作新是青年一代鸟类学研究者的好导师,他早年编写了《大学生物学实验教程》《普通生物学》《脊椎动物分类学》等高校教材,培养了许许多多进修生、硕士生和博士生。他对学生的培养认真负责,亲自讲授专业课。为了鼓励年轻一代尽快成长,他用自己获得的部分奖金设立了"郑作新鸟类科学青年奖",授予在鸟类学研究中有突出成绩的青年工作者。

郑作新曾两次担任《动物学杂志》编委会的主编。《动物学杂志》编辑部 1958 年从上海移址北京,由郑作新担任主编。在他的领导下,1959 年杂志改为月刊,并大大扩展了在全国的发行量。1974 年,停刊近 8 年的《动物学杂志》正式复刊,郑作新再次担任主编,加快了我国动物学科的复兴。1987 年,郑作新为《动物学杂志》题词"祝贺动物学杂志越办越好,为国争光!",对杂志充满了期望。1997 年,91 岁高龄的郑作新院士再次为《动物学杂志》题词"传播动物知识,发扬学术民主",指明了我刊的办刊方向。

(下转第66页)